Keyword and Keyphrase Extraction Using Centrality Measures on Collocation Networks

نویسندگان

  • Shibamouli Lahiri
  • Sagnik Ray Choudhury
  • Cornelia Caragea
چکیده

Keyword and keyphrase extraction is an important problem in natural language processing, with applications ranging from summarization to semantic search to document clustering. Graph-based approaches to keyword and keyphrase extraction avoid the problem of acquiring a large in-domain training corpus by applying variants of PageRank algorithm on a network of words. Although graph-based approaches are knowledge-lean and easily adoptable in online systems, it remains largely open whether they can benefit from centrality measures other than PageRank. In this paper, we experiment with an array of centrality measures on word and noun phrase collocation networks, and analyze their performance on four benchmark datasets. Not only are there centrality measures that perform as well as or better than PageRank, but they are much simpler (e.g., degree, strength, and neighborhood size). Furthermore, centrality-based methods give results that are competitive with and, in some cases, better than two strong unsupervised baselines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Centrality Measures for Graph-Based Keyphrase Extraction

In this paper, we present and compare various centrality measures for graphbased keyphrase extraction. Through experiments carried out on three standard datasets of different languages and domains, we show that simple degree centrality achieve results comparable to the widely used TextRank algorithm, and that closeness centrality obtains the best results on short documents.

متن کامل

KX: A Flexible System for Keyphrase eXtraction

In this paper we present KX, a system for keyphrase extraction developed at FBK-IRST, which exploits basic linguistic annotation combined with simple statistical measures to select a list of weighted keywords from a document. The system is flexible in that it offers to the user the possibility of setting parameters such as frequency thresholds for collocation extraction and indicators for keyph...

متن کامل

Toward Network-based Keyword Extraction from Multitopic Web Documents

In this paper we analyse the selectivity measure calculated from the complex network in the task of the automatic keyword extraction. Texts, collected from different web sources (portals, forums), are represented as directed and weighted co-occurrence complex networks of words. Words are nodes and links are established between two nodes if they are directly co-occurring within the sentence. We ...

متن کامل

Toward Network-based Keyword Extraction from Multitopic Web Documents

In this paper we analyse the selectivity measure calculated from the complex network in the task of the automatic keyword extraction. Texts, collected from different web sources (portals, forums), are represented as directed and weighted co-occurrence complex networks of words. Words are nodes and links are established between two nodes if they are directly co-occurring within a sentence. We te...

متن کامل

Improved Keyword and Keyphrase Extraction from Meeting Transcripts

Keywords play a vital role in extracting the correct information as per user requirements. Keywords are like index terms that contain the most important information about the content of the document. Keyword Extraction is the task of identifying a keyword or keyphrase from a document that can help users easily to understand the documents. Meeting transcripts is significantly different from docu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1401.6571  شماره 

صفحات  -

تاریخ انتشار 2014